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Abstract

Purpose—To estimate the accuracy of two algorithms to identify cholecystectomy procedures 

using International Classification of Diseases, 9th Edition, Clinical Modification (ICD-9-CM) and 

Current Procedural Terminology (CPT-4) codes in administrative data.

Methods—Private insurer medical claims for 30,853 patients 18–64 years with an inpatient 

hospitalization between 2006 and 2010, as indicated by providers/facilities place of service in 

addition to room and board charges, were cross-classified according to the presence of codes for 

cholecystectomy. The accuracy of ICD-9-CM- and CPT-4-based algorithms was estimated using a 

Bayesian latent class model.

Results—The sensitivity and specificity were 0.92 [probability interval (PI): 0.92, 0.92] and 0.99 

(PI: 0.97, 0.99) for ICD-9-CM-, and 0.93 (PI: 0.92, 0.93) and 0.99 (PI: 0.97, 0.99) for CPT-4-

based algorithms, respectively. The parallel-joint scheme, where positivity of either algorithm was 

considered a positive outcome, yielded a sensitivity and specificity of 0.99 (PI: 0.99, 0.99) and 

0.97 (PI: 0.95, 0.99), respectively.

Conclusions—Both ICD-9-CM- and CPT-4-based algorithms had high sensitivity to identify 

cholecystectomy procedures in administrative data when used individually and especially in a 

parallel-joint approach.
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INTRODUCTION

In the United States, approximately 700,000 cholecystectomy procedures are performed 

each year,1 which makes it one of the most commonly performed surgical procedures. 

Administrative data have been used in several studies to identify cholecystectomy 

procedures.2-9 These data are increasingly used for health services and outcomes 

research,10-13 which is a concern due to uncertainty regarding the accuracy of diagnostic and 

procedural coding.14-16 Administrative data are comprised of detailed health information 

including electronic insurance enrollment information, basic demographics, and claims 

submitted by providers and facilities for the purpose of billing and reimbursement. Given 

the distinct differences in data collected for billing versus research, it may be difficult to 

ascertain the true status of subjects with regard to an outcome or an exposure of interest 

when using administrative data.

To the best of our knowledge, there are no studies that assess the accuracy of different 

coding algorithms to identify cholecystectomy procedures in administrative data. The 

traditional method to validate a diagnostic algorithm is to compare it to a criterion with 

perfect accuracy, referred to as the reference or ‘gold’ standard. For administrative data, 

medical record (chart) review is often be used as the reference standard. However, a 

reference standard may not always be available for some administrative data studies due to 

the costs of obtaining another data source to use as a reference standard or lack of access to 

charts for record review. Without a reference standard, relying on a claims-based algorithm 

to identify subjects’ status in a study population could cause misclassification of the 

subjects’ outcome or exposure status, leading to biased estimates of prevalence or 

association between risk factors and an outcome.17-19 In the absence of a reference standard, 

model-based methods, such as Bayesian latent class models, were developed to estimate the 

accuracy of diagnostic tests.20-22 Bayesian methods allow incorporation of uncertainty as 

well as current knowledge regarding the parameters of interest into analysis through 

probability distributions, referred to as priors. Furthermore, Bayesian methods do not rely on 

large sample approximations for parameter estimation and provide direct probability 

interpretation of results from posterior distributions.23

The purpose of this study was to estimate the accuracy of two different algorithms to 

identify cholecystectomy procedures based on the two commonly used coding systems in 

administrative data, the International Classification of Diseases, 9th Edition, Clinical 

Modification (ICD-9-CM) and Current Procedural Terminology (CPT-4) codes, using 

Bayesian latent class models. Moreover, we provide estimates of the accuracy of the coding 

algorithms when used jointly in a parallel scheme.

METHODS

Data

Medical claims data from 13 Blue Cross/Blue Shield health plans contained in the 

HealthCore Integrated Research Database (HIRDSM) were used. The data included facility 

and professional adjudicated and paid claims for members ages 18–64 years enrolled in a 

non-capitated medical (hospital and physician) health plan from January 2006 through 
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December 2010. We restricted this study to an inpatient population because ICD-9-CM 

procedure codes are reported by facilities for inpatient stays, but not routinely for outpatient 

or ambulatory visits. Each medical claim could include unlimited CPT-4 codes and up to 

five ICD-9-CM procedure codes.

The inpatient stay was established based on one or more claims with an inpatient place of 

service assigned by a facility or a provider; consecutive dates on claims with an inpatient 

place of service defined the duration of the surgical episode. A room and board charge, 

defined as Uniform billing revenue codes in the range 0100–0249, was required during the 

surgical episode to meet the definition of an inpatient surgical episode. Whenever there was 

more than one distinct surgical episode corresponding to cholecystectomy for a patient, only 

the first surgical episode was included.

Algorithms

Two algorithms were considered to identify cholecystectomy procedures. The first algorithm 

was based on ICD-9-CM procedure codes only. In this algorithm any patient with an 

inpatient stay with ICD-9-CM procedure codes 51.21–51.24 was considered positive for 

having had a cholecystectomy procedure performed.

The second algorithm was based on CPT-4 codes only. In the CPT-4 algorithm, any 

inpatient stay coded by a provider with 47562, 47563, 47564, 47600, 47605, 47610, 47612, 

or 47620 was considered positive for having had a cholecystectomy procedure performed.

Modeling

The accuracy of a binary diagnostic test is often presented by measures such as sensitivity, 

the probability of a positive result in the population with the condition of interest, and 

specificity, the probability of a negative result in the population without the condition of 

interest. Without a ‘perfect’ method of ascertainment or a reference standard, the accuracy 

of coding algorithms is ‘latent’,(i.e., the accuracy cannot be directly observed, but can be 

estimated from data).24,25 We used a modified version of the Bayesian latent class model of 

‘two tests, one population’, as discussed in Joseph et al 1995,20 which does not rely on 

information from a reference standard to estimate the accuracy measures of interest, i.e. 

sensitivity and specificity. Hui and Walter 1980 provided methods to estimate the accuracy 

of two tests without a reference standard.26 The problem in estimating the five parameter of 

interest, two sensitivities, two specificities and prevalence, is that there are only three 

independent cells (degrees of freedom) available in a cross-classified table of test results, 

which leads to statistical non-identifiability.27 Therefore, the problem is unsolvable using 

frequentist methodology without additional assumptions. Hui and Walter required a second 

population with distinct prevalence in order to increase the degrees of freedom required to 

estimate the five parameters of interest in addition to the prevalence in the second 

population. Bayesian approach is able to tackle this problem and lack of identifiability (or 

weak identifiability) in the ‘two tests, one-population’ scenario by specifying probability 

distributions on the parameters of interest.27

In a Bayesian approach, uncertainties regarding the accuracy of coding algorithms are 

represented by probability distributions. These probability distributions, commonly referred 
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to priors, are combined with a likelihood function of data to obtain updated probability 

distributions, referred to as posterior distributions, for all parameters of interest. A detailed 

description of the model is in the Appendix. Briefly, the results for the two algorithms were 

cross-classified, where it was assumed that the observed cross-classified results have a 

multinomial sampling distribution. The multinomial probabilities associated with the cross-

classified results can be described by the true-positive (sensitivity), false-positive (‘1 – 

sensitivity’), true-negative (specificity) and false-negative (‘1 – specificity’) probabilities, 

and the probability of the condition in the population.20,22 It was assumed that the results of 

the two algorithms are independent of each other conditional on the true cholecystectomy 

status. The conditional independence assumption is reasonable since CPT-4 and ICD-9-CM 

procedure codes are coded independently by separate entities (i.e., facility medical coders 

for ICD-9-CM procedure codes and clinicians or their staff for CPT-4 codes). For situations 

where algorithms may be dependent, a model that incorporates conditional dependence 

could be used.22,28

We then estimated the sensitivity and specificity of the two algorithms. A parallel-testing 

scheme is often implemented for screening or diagnostic algorithms in order to improve or 

gain increased sensitivity. In the parallel-testing scheme, having a positive result from either 

of the two algorithms would be considered as a positive outcome. Therefore, we also 

estimated the sensitivity and specificity of the two algorithms when they were used in 

parallel combination.

Priors

We used BetaBuster software (http://www.epi.ucdavis.edu/diagnostictests/betabuster.html) 

to obtain a unique beta prior corresponding to our prior belief. The BetaBuster requires two 

quantities to obtain a unique beta distribution. We first determined our best guess for the 

most likely value for a parameter, for example, sensitivity of the ICD-9-CM-based 

algorithm, and then our best guess that the most likely value for the parameter is more (or 

less) than a specific value. BetaBuster uses the most likely value as the mode and the other 

quantity as the 5th (or 95th) percentile of the corresponding beta distribution. For example, 

we assumed that the most likely value (mode) for the sensitivity of the ICD-9-CM-based 

algorithm is 0.95, and we are 95% sure that the mode is more than 0.80, which corresponds 

to the Beta(21.20, 2.06) distribution. The elicited priors used for the Bayesian model 

parameters are summarized in Table 1.

The model described in the previous section is non-identifiable; however, achieving 

identifiability is not mandatory in Bayesian analysis with informative priors.27 Therefore, 

priors were specified to be consistent with the data, where implausible (or extremely 

unlikely) and non-informative priors were not considered. Sensitivity analyses for our 

proposed model were performed using two sets of less informative priors (Table 1) to assess 

how posterior estimates would be affected by our choice of priors.

Computation

The Bayesian modeling was performed in JAGS version 3.4.029 through ‘rjags’30 library in 

R31 software.31 All inferences were based on 100,000 iterations thinned from 100,000,000 
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after a burn-in of 10,000,000 iterations. Geweke’s statistic was used to assess lack of 

convergence for the Markov chains through ‘coda’32 library in R.

RESULTS

The study population included 30,853 patients with a cholecystectomy coded during an 

inpatient hospital stay. Table 2 presents the cross-classified results for the ICD-9-CM- and 

CPT-4-based algorithms for the study population.

The posterior median and 95% probability interval for the sensitivities and specificities of 

the two algorithms when used separately and also when used in parallel are summarized in 

Table 3. Both algorithms had high accuracy to identify cholecystectomy procedures in this 

data. When used individually, it was estimated that the false negative proportions were about 

8% and 7% for the ICD-9-CM- and CPT-4-based algorithms, respectively. The highest 

sensitivity of detection was obtained when the algorithms were used jointly in the parallel 

scheme (0.99, probability interval [PI]: 0.99, 0.99; Table 3). Sensitivity analysis with 

separate sets of less informative priors produced similar results (Table 3).

DISCUSSION

Our study suggests that both the ICD-9-CM- and CPT-4-based algorithms have high 

accuracy, especially when used in parallel combination, to identify cholecystectomy 

procedures in administrative data. Several studies using administrative data have relied on 

ICD-9-CM procedure codes alone to identify cholecystectomy procedures.4,5,8 Some 

investigators have required additional ICD-9-CM diagnosis codes for conditions such as 

gallbladder disease along with ICD-9-CM procedure codes to identify 

cholecystectomy.2,3,6,7,9 This approach, commonly referred to as serial-testing, could 

potentially lead to a higher specificity to detect cholecystectomy at the expense of a loss in 

sensitivity. In some studies, a reference standard was used to validate the detection 

algorithm only for subjects who had ICD-9-CM procedure codes for cholecystectomy;4,8 

consequently, unless adjusted for in the analysis or the design of the study, this could lead to 

partial verification bias, also referred to as workup bias.33 Weinhandl and Gilbertson 

showed that the commonly used case-control design, where the validation study population 

includes a random sample of the subjects without any code in addition to all the subjects that 

are positive due to an algorithm, could potentially result in biased estimates of the accuracy 

and invalid findings because estimates for specificity and (consequently) predictive values 

vary considerably with the sampling rate.34

In our study, we did not rely on a reference standard to verify the true classification status of 

subjects for each algorithm. Instead, we relied on a model-based approach to estimate the 

accuracy of the algorithms through Bayesian modeling, where current knowledge and 

uncertainty about the accuracy of the algorithms were represented by probability 

distributions. Model-based estimation of the accuracy of algorithms in administrative data 

has previously been used to identify conditions or procedures such as osteoarthritis,19 

systemic lupus erythematosus,35 autoimmune rheumatic disease36 and screening 

colonoscopy37 among others. An important feature of our study is that we used a national 
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insurer database that represents multiple hospitals and physician groups of various sizes in 

both academic and private settings, which strengthens its generalizability.

In general, inaccuracy in administrative data can occur in several ways. For example, coding 

for some procedures may be complicated and subject to interpretation. Untimely 

documentation by clinicians could lead to inaccuracy in medical records if coders need to 

complete their coding documentation before operating notes are complete.38 Some hospitals 

may use commercially available coding software rather than medical coders, likely resulting 

in some degree of coding error.

It is possible that we had missing records on CPT-4 codes from providers in our data 

potentially due to denial of provider claims by private insurers or incomplete enrollment 

information for patients with dual insurance; consequently, we may not have had complete 

information on CPT-4 codes from providers, which would have resulted in a lower 

sensitivity for the CPT-4-based algorithm. The number of ICD-9-CM procedure codes on 

each hospital claim in our data was limited to five. The primary purpose of administrative 

data is reimbursement of healthcare costs; thus, multiple diagnosis or procedure codes are 

likely to be listed in order to maximize remuneration. It is possible that ICD-9-CM 

procedure codes could have been dropped if there were other conditions associated with 

higher reimbursement occurring during the same inpatient admission.12 Another option is 

that ICD-9-CM codes may be listed temporally, so some codes may be missed if a procedure 

was performed relatively late into the admission, especially for long hospitalizations. 

However, possible dropping of ICD-9-CM procedure codes did not appear to be a problem 

in our data. Only about 0.4% of patients, who were assigned a CPT-4 code for 

cholecystectomy by providers, had a facility claim that used all five fields allocated for 

ICD-9-CM procedure codes during their surgical admission without having an ICD-9-CM 

procedure code for cholecystectomy on their claims.

Our study population was based on inpatient hospitalizations; therefore, the parallel 

combination would not be applicable for ambulatory procedures since CPT-4 codes are 

assigned by both facilities and providers in ambulatory settings. The parallel combination 

would also not be applicable for databases containing only hospital billing data, as those 

data would be restricted to only ICD-9-CM procedure codes. Moreover, the parallel 

approach, for the purpose of maximizing sensitivity, may not be the most reasonable choice 

in all settings or for other procedures, for example when identifying true-positives does not 

outweigh consequences associated with including more false-positives in the study 

population.

Even though we have used administrative data from a large private insurer that cover 

regions in the Southeast, Mid-Atlantic, Eastern, Central, and Western regions of the United 

States, it should be noted that the assumption of constant sensitivity and specificity across 

populations may not hold unless the factors contributing to heterogeneity of populations 

could be measured and controlled. Therefore, sensitivity and specificity of our algorithms 

may not be the same when they are applied to populations and administrative datasets with 

distinctly different characteristics.39 The two algorithms that we evaluated are coded 

independently by distinct entities (ICD-9-CM procedure codes by facilities and CPT-4 codes 
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by providers) and are considered being inherently independent. There are uncommon 

instances where these could be coded by the same group in a hospital, for example by a 

hospital-employed surgeon. However, we avoided estimating two additional parameters for 

conditional covariances between the sensitivities and specificities of the algorithms because 

there is no extra information in data and the posterior estimates for conditional covariances 

would be the same as priors on these covariances.

The findings of this study suggest that both the ICD-9-CM- and CPT-4-based algorithms, 

especially in parallel combination, have high accuracy to identify cholecystectomy 

procedures in inpatient hospital populations using administrative data. Using multiple 

algorithms to increase the accuracy of detection is a common practice; however, the gain by 

parallel interpretation of these two algorithms is marginal since both algorithms are 

estimated to be highly accurate. In practice, whether an investigator uses multiple algorithms 

in parallel-, serial- or sequential-schemes or even individually depends on a specific setting, 

the accuracy of each individual algorithm, and the trade-off between sensitivity and 

specificity of the chosen scheme. Further, the study illustrates use of Bayesian latent class 

model to estimate accuracy of coding algorithms in administrative data.
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APPENDIX

The resulting data after applying the ICD-9-CM- and CPT-4-based algorithms, denoted as 

algorithms 1 and 2, respectively, are cross-classified. It is assumed that the results of the two 

algorithms for a given patient are independent, conditional on the true status of each patient 

with regard to whether a cholecystectomy procedure was performed or not.

Let X = (X11, X10, X01, X00) be the vector of results for the two algorithm, where X11 is the 

number of patients that are positive for both algorithm 1 and 2, X10 (X01) is the number of 

patients that are positive (negative) for algorithm 1 (algorithm 2), and X00 is the number of 

patients that are negative for both algorithms 1 and 2. The observed cross-classified results 

are modeled as multinomial:

where N is the sampled population and p’s are the multinomial probabilities corresponding 

to observed data, and are given by
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where π is the probability of the condition of interest in the population, and Se and Sp are 

the corresponding sensitivities and specificities of algorithms 1 and 2. For example, p11 is 

calculated as p11 = Pr(T1+,T2+) = Pr(T1+,T2+|D+)Pr(D+) + Pr(T1+,T2+|D−)Pr(D−) = 

πSe1Se2 + (1 − π)(1 − Sp1)(1 − Sp2), where T refers to an algorithm and D refers to true 

cholecystectomy status.

Furthermore, the sensitivity and specificity of the parallel-joint scheme are SeParallel = Se1 + 

Se2 − Se1Se2 and SpParallel = Sp1Sp2, respectively. JAGS version 3.4.0 code to run the 

model:

    model{

    # likelihood

    X[1:4] ~ dmulti(p[1:4], N)

    p[1] <– pi * Se1 * Se2 + (1 − pi) * (1 − Sp1) * (1 − Sp2)

    p[2] <– pi * Se1 * (1 − Se2) + (1 − pi) * (1 − Sp1) * Sp2

    p[3] <– pi * (1 − Se1) * Se2 + (1 − pi) * Sp1 * (1 − Sp2)

    p[4] <– pi * (1 − Se1) * (1 − Se2) + (1 − pi) * Sp1 * Sp2

    Se.Parallel <– Se1 + Se2 − Se1 * Se2

    Sp.Parallel <– Sp1 * Sp2

    # priors

    pi ~ dbeta(, )

    Se1 ~ dbeta(, )

    Sp1 ~ dbeta(, )

    Se2 ~ dbeta(, )

    Sp2 ~ dbeta(, )

       }
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If X00 is not available, data X = (X11, X10, X01) can be modeled as

where

The second scenario is more common in administrative data because often study data are 

extracted from complex and multi-layered administrative databases by querying for specific 

diagnosis or procedure codes; however, such data may not be accessible on all patients, 

especially patients who don’t have these specific codes.
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KEY POINTS

• The ICD-9-CM- and CPT-4 based algorithms have high accuracy to identify 

cholecystectomy procedures in administrative data. This has not been 

demonstrated before despite the use of administrative data to identify 

cholecystectomy in several past studies.

• Whenever possible, the use of ICD-9-CM- and CPT-4-based algorithms used in 

parallel combination is recommended to achieve the highest sensitivity to 

identify cholecystectomy procedures in administrative data.
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Table 1

Elicited priors for the sensitivities and specificities of the ICD-9-CM- and CPT-4-based algorithms.

Algorithm Parameter Parameter description and
corresponding prior

Alternative prior for
sensitivity analysis 1

Alternative prior for
sensitivity analysis 2

Pr Mode = 0.97, 95% sure
that mode > 0.90;
Beta(53.58, 2.63)

Mode = 0.97, 95% sure
that mode > 0.90;
Beta(53.58, 2.63)

Mode = 0.97, 95% sure
that mode > 0.90;
Beta(53.58, 2.63)

ICD-9-CM-based Se Mode = 0.95, 95% sure
that mode > 0.80;
Beta(21.20, 2.06)

Mode = 0.95, 95% sure
that mode > 0.65;
Beta(8.45, 1.39)

Mode = 0.80, 95% sure
that mode > 0.60;
Beta(14.8442, 4.4611)

Sp Mode = 0.99, 95% sure
that mode > 0.97;
Beta(212.12, 3.13)

Mode = 0.99, 95% sure
that mode > 0.95;
Beta(88.28, 1.88)

Mode = 0.99, 95% sure
that mode > 0.95;
Beta(88.28, 1.88)

CPT-4-based Se Mode = 0.95, 95% sure
that mode > 0.80;
Beta(21.20, 2.06)

Mode = 0.95, 95% sure
that mode > 0.65;
Beta(8.45, 1.39)

Mode = 0.80, 95% sure
that mode > 0.60;
Beta(14.8442, 4.4611)

Sp Mode = 0.99, 95% sure
that mode > 0.97;
Beta(212.21, 3.13)

Mode = 0.99, 95% sure
that mode > 0.95;
Beta(88.28, 1.88)

Mode = 0.99, 95% sure
that mode > 0.95;
Beta(88.28, 1.88)

Pr = probability of the condition in the population; Se = sensitivity; Sp = specificity.
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Table 2

Cross-classified results of the ICD-9-CM- and CPT-4-based algorithms for cholecystectomy procedures.

ICD-9-CM-based CPT-4-based Frequency

+ + 26 446 (85.7%)

+ − 2 091 (6.8%)

− + 2 316 (7.5%)

Total 30 853
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Table 3

Posterior medians and 95% probability intervals for the accuracy of the ICD-9-CM- and CPT-4-based 

algorithms when used separately and jointly in parallel.

Algorithm Parameter Posterior median
(95% PI)

Posterior median (95%
PI) using priors in
sensitivity analysis 1

Posterior median (95% PI)
using priors in sensitivity
analysis 2

ICD-9-CM-based Se 0.92 (0.92, 0.92) 0.92 (0.92, 0.92) 0.92 (0.92, 0.92)

Sp 0.99 (0.97, 0.99) 0.98 (0.94, 0.99) 0.98 (0.94, 0.99)

CPT-4-based Se 0.93 (0.92, 0.93) 0.93 (0.92, 0.93) 0.93 (0.92, 0.93)

Sp 0.99 (0.97, 0.99) 0.98 (0.94, 0.99) 0.98 (0.94, 0.99)

Parallel-joint Se 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99)

Sp 0.97 (0.95, 0.99) 0.96 (0.91, 0.99) 0.96 (0.91, 0.99)

PI = probability interval; Se = sensitivity; Sp = specificity.

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2017 March 01.


